Proje	ctiles Shot at an Angle
Review of Horizontal Projectiles:	
v _x remains	because we:
Vy	as an object falls due to which is a_y =
An object moves in t direction and gravity	he shape of a half parabola because it has velocity in the x- pulls it down in the y-direction.
Joey pushes Mike hc v _x =	rizontally off a cliff at 5 m/s. What is Mike's:
	Projectiles shot at an ANGLE:
1. The horizonta	velocity (v _x) still remains
2. The vertical ve	elocity (vy)
Think of the v_y if it on	y went up and down. What happens to the vy?
	TIP: The y velocity at the top =
Now apply a horizor	tal component to it. The v _x DOES NOT CHANGE the v _y !

Example: A cat tries to launch itself out of a cannon at 30° N of E. He leaves the cannon with a velocity of 9 m/s (**This is a combination of his vertical and horizontal velocity**!). What will be his maximum height (Δy), AND will he make it across a 10 m wide road? (Solve Δx)

To use either equation, we need to find the **time** (Δ t) the cat was in the air.

$$a = \frac{V_f - V_i}{\Delta t}$$
 becomes:

You can solve for the time at the top of the parabola because the y-velocity = _____ So... V_{fy} = _____ at the top (which is $\frac{1}{2}$ way through the flight).

 $\Delta t =$ ______ This is the time ______, so the

TOTAL time of the flight = _____

Now that we have Δt ...back to our other equations

Maximum Height: (Δy)

Total Distance (Δx)