\qquad

Review of Horizontal Projectiles:

v_{x} remains \qquad because we: \qquad
v_{y} \qquad as an object falls due to \qquad which is $a_{y}=$ \qquad
An object moves in the shape of a half parabola because it has velocity in the x direction and gravity pulls it down in the y-direction.

Joey pushes Mike horizontally off a cliff at $5 \mathrm{~m} / \mathrm{s}$. What is Mike's:

$$
v_{x}=\ldots \quad v_{i y}=\ldots \quad a_{y}=
$$

Projectiles shot at an ANGLE:

1. The horizontal velocity $\left(v_{\mathrm{x}}\right)$ still remains \qquad
2. The vertical velocity $\left(v_{y}\right)$ \qquad

Think of the v_{y} if it only went up and down. What happens to the v_{y} ?

TIP: The y velocity at the top $=$ \qquad

Now apply a horizontal component to it. The \mathbf{v}_{x} DOES NOT CHANGE the $\mathbf{v}_{\mathbf{y}}$!

\qquad Hour \qquad

Example: A cat tries to launch itself out of a cannon at $30^{\circ} \mathrm{N}$ of E . He leaves the cannon with a velocity of $9 \mathrm{~m} / \mathrm{s}$ (This is a combination of his vertical and horizontal velocity!). What will be his maximum height ($\Delta \mathrm{y}$), AND will he make it across a 10 m wide road? (Solve $\Delta \mathrm{x}$)

The components of velocity:

To use either equation, we need to find the time (Δt) the cat was in the air.

$$
a=\frac{V_{f}-V_{i}}{\Delta t} \quad \text { becomes: }
$$

You can solve for the time at the top of the parabola because the y-velocity $=$ \qquad
So...Vfy = \qquad at the top (which is $1 / 2$ way through the flight).
$\Delta t=$ \qquad This is the time \qquad , so the TOTAL time of the flight = \qquad
Now that we have Δt...back to our other equations
Maximum Height: ($\Delta \mathrm{y}$)

